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   Abstract - The aim of this study was to develop algorithms for 
simulation of DRR calculation for different accelerator voltages. 
We also developed a number of useful tools for an application of 
DRRs in modern brachytherapy treatment planning. 

 
   Index Terms – DRR (digitally reconstructed radiograph), 
brachytherapy, catheters, computed tomography 

I. INTRODUCTION 

   Modern brachytherapy treatment planning is image based 
and frequently used imaging modality is CT scanning. We 
use the CT-data set to form the threee dimensional volumetric 
data set, whose each voxel is characterised with the 
characteristic CT-number given in Hounsfield units (HU). 
From this volumetric data set we further calculate DRRs 
defined with a number of parameters selected by user. 
Clinical use of such developed DRRs is presented next. 

II. MATERIAL AND METHODS 

   A. Calibration of CT scanning machine 
   First step in the process of DRR calculation was to make 
calibration of our CT scanning machine, Somatom Plus 4 CT 
scanner♦ , and to acquire the curve "Relative electron density 
~ Hounsfield numbers"1,2. This calibration was made with 
using  the 33 cm diameter phantom, "RMI Electron Density 
Phantom model 465♣"1-3. The aim was to establish the 
relationship between the electron density of various tissues 
and their corresponding CT number. This phantom has 
twenty 2.8 cm-diameter holes, into which 6 rods made of 
commercially available plastics and 11 rods simulating 
different tissues with known elemental composition and 
electron densities, were inserted3,4. The remaining three rods 
are made of solid water, the same material as the bulk of the 
phantom.  
As the calibration of the CT scanning machine is done, we 
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establish the relationship between the relative electron 
density of material and its HU: 
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   B. Look-up tables 
Relative electron density and an elemental compound of 
different human tissues is well known from literature5-7. We 
devide the whole range of HU values that our treatment 

planning system use: [-1500÷4500]HU, in 23 sub-ranges. 
These sub-ranges are defined with the calculated HU values 
of 23 calibration materials and human tissues of known 
electron density. Using the XCOM8 program, we next 
calculate the linear attenuation coefficients of those 23 
materials for 11 different accelerator voltages (0.05, 0.075, 
0.10, 0.125, 0.15, 0.30, 0.37, 1.25, 6.0 and 12.0 [MeV]), from 
their known elemental composition1,2. After that, the linear 
attenuation coefficient for the energy X, for the material of 
the HU number HUx which belongs to one of 23 sub-ranges: 
[HUa, HUb], is calculated by the linear interpolation from the 
linear attenuation coefficients of the known tissues a and b 
for the same accelerator energy. 
After that, look-up tables are formed of the pairs   (HUi,µE,i) 
for all selected energies and HU numbers which belong to the 
range [-1500÷4500]HU. This look-up tables are used in the 
DRR calculation algorithm. 

Fig. 1.  A calibration curve, relating CT number (HU)  to electron density 
(ρ e). 
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   C. User Defined Parameters 
Before the process of DRR calculation starts, user need to 
select a number of available parameters which are used in the 
DRR calculation algorithm1,2. Those are: (a) DRR calculation 
method  (pseudo-simulation or splatting method), (b) number 
of DRRs (one or two), (c) area of calculation (whole CT data 
set, region within the body contours, user defined region), (d) 
volumetric data resolution in x, y and z direction, (e) DRR 
image resolution, (f) accelerator voltage, (g) gantry angle, 
focus-film and focus-axis distance, (h) DRR range filters 
(anatomical: bone, fat, soft tissue, and catheter filters: plastic 
and metallic). 

   D. Pseudo-simulation of DRR calculation 

Pseudo-simulation algorithm for the DRR calculation 
calculates the attenuation of the ray coming from an 
accelerator source and passing through the volumetric data 
set onto the DRR image plane. Simplified process is 
presented in Fig. 2. Resulting images are shown in Fig 3.  

   E. Splatting technique 

Basic splatting algorithm used here for the DRR calculation 
is presented elsewhere9-12 and we will not discuss it  here.  

   F. Tools used in work with DRRs 

Whenever the set of patient CT-data is available, DRR can be 
used instead of the classical radiological film.Beside od a 
number of advantages of this method which are numbered in 
Conclusion, we developed very helpful tools for work with 
DRRs. Some of those are: (a) projection and display of target 
and organ-of-interest contours on DRR images, (b) catheter 
reconstruction tools from the two isocentric DRRs which is 
“helped” with the matching and navigation algorithms 
between the two DRRs, (c) catheter projection on DRR (if 

they are already reconstructed), (e) magnification of the 
chosen areas, (f) DRR image processing to produce the best 
image quality, (f) absance of the noise caused by scattering, 
(g) navigation tools (between the (i) 3D volume / any  CT 
slice to DRR image,  (ii) between two DRRs), (h) ruler which 
shows distances in a real dimensions, (i) patient position 
correction by matching the portal image and one DRR image 
produced for the same accelerator energy and geometric 
parameters, (j) DRR range filters (anatomical: bone, fat, soft 
tissue, Fig. 4, and catheter filters: plastic and metallic), Fig. 5, 
etc. 

   G. Catheter reconstruction from two DRRs 
Two different recostruction methods are developed for the 
catheter reconstruction from two isocentric DRR images13. 
First is the one-to-one reconstruction method, which lead user 
through the reconstruction process with a help of the 
navigation tools between two DRRs. The second is the  
generalized polinomial method which does not require an 
user knowledge about the catheter pairs, neither their 
correcponding points on two DRRs. 

III. RESULTS AND DISCUSSION 

Our DRR algorithm was tested in everyday clinical practice. 
It signifficantly shortened the process of treatment planning, 
simplifies it for the user and make the whole process much 
more accurate and user friendly. The most important thing is 
that there is no additional patient irradiation which accure 
while taking the classic radiological films. 
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Fig. 2.  Ray tracing process presentation.  I0 is the initial ray energy 
and I is an attenuated ray energy after the ray tracing through the 
volumetric data set is done. di are distances between the ray entrance 
and exit point in the voxel i, and µi is the linear attenuation coefficient 
of voxel i. 

              (a)       (b) 

  (c)      (d) 
Fig. 3.   DRRs calculated for the different accelerator energies: (a) 
0.050 MeV, (b) 0.150 MeV, (d) 1.25 MeV and (e) 6.0 MeV.  
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IV. CONCLUSION 

This approach has a number of advantages against the work 
with a classical radiological films: 
(i)There is no additional patient irradiation that enables 
calculation of necessary number of DRRs to find the two best 
views for the process of catheter reconstruction. 
(ii)Use of anatomical and catheter filters enables 
reconstruction of the catheters that would otherwise be 
entirely or partly obscured by bones and soft tissue. 
(iii)No need for the radiological film acquisition and 
digitalization that significantly speeds up the process of 
catheter reconstruction.  
(iv)Possible patient motion during the CT slice acquisition is 
insignificant compared to the motion present between the two 
radiological films acquisition. 
(v)There is no need for matching between two DRRs, as in 
the case of radiological films as DRRs are produced from the 
same volumetric data set. 

(vi)Simple solutions for the (usually) ill defined cases which 
can occur during the catheter reconstruction from radiological 
films. 
(vii)Simple patient-position correction by matching of one 
portal image and DRR image calculated for the same energy. 
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 Bones included 

    Soft tissue included 

  Fat tissue included 

No anatomical filter 

    Fig. 4. Example of use of the anatomical filters in the DRR calculation
    process.  

         (a)                                                (b) 
Fig. 5. Example of the use of catheter filters: (a) metallic and (b) plastic 
catheters projected on the DRR image plane (prostate and breast cancer). All 
other information is rejected.  
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